
1

2nd Int. PhD Symposium in Civil Engineering 1998 Budapest

TORSION OF REINFORCED CONCRETE BEAMS

Ádám Csikós1 and István Hegedûs2

Technical University of Budapest, Department of Reinforced Concrete Structures
H-1521 Budapest

SUMMARY

In the first part of the following paper we will introduce the most important methods for
analyzing a reinforced concrete member. In the second part we will present the results of
the experiments made on 15 reinforced concrete and unreinforced concrete beams loaded
by pure torsion, and compare the results obtained by the above mentioned methods with
the results calculated by Eurocode2 and the Hungarian Code.
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1. INTRODUCTION

In structural analysis the effects of torsion are usually neglected and only bending, shear,
and axial forces are taken into account. Why should we analyze torsion after all? There
are numerous reasons. First of all in some structures (e.g. L shaped beams) its effects
should be taken into consideration. Secondly even small torsional moments can raise
considerable stresses and so can change the response of the whole structure. Thirdly with
greater computational capacity (3D analysis) torsional load can easily be calculated.
Moreover the combination of torsion with other loads is still not clear.

Analyzing the torsional behavior of a reinforced concrete member we can be divided into
three main stages. The first is the pre-cracking stage where it is possible to assume a
homogenous concrete cross section. The second is the post cracking stage where a
method based on Rausch’s space truss analogy is normally used. The third stage is the
stage where the crack occurs. This stage has more importance in the case of complex
loading when it is necessary determine an interaction surface.

2. PRE-CRACKING BEHAVIOR

To calculate the pre-cracking behavior and the cracking load there are three basic
methods. The elastic theory of torsion was presented by Saint-Venant in the middle of
the last century. It claims that for the crack load:
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The problem with this equation is that the obtained results are unconservative by
approximately 50%. Nylander first used the plastic method in 1955 to correct this huge
difference. He used a similar equation but he utilized Nadai’s plastic coefficient into is
instead of Saint-Venant’s elastic one:
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There are two problems with this equation.  The first problem is obvious: the failure is
definitely not plastic.  The second is that it does not account for the size effect.

The third method is the skew-bending theory. This is based on observations of torsion
tests. Here the first crack appears on the front face and inclines at 45% to the axis of the
beam. It gradually widens and progresses across the top of the beam until, ultimately, the
concrete crushes on the back face. This failure is similar to that of a unreinforced
concrete flexural beam and, therefore, reveals a bending-type failure. The ultimate
strength equation is as follows:
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Comparing the elastic theory, the plastic theory and the skew-bending theory it can be
seen that they all contain x2·y. The only differences lie only in the non-dimensional
coefficients and material constants.

3. POST-CRACKING BEHAVIOR

In recent years many theories have been developed for calculating the torsional strengths
of members with both longitudinal steel and stirrups in the post-cracking range. These
theories can be roughly divided into two types: the space-truss analogy and the skew-
bending theory. The former is the oldest and more commonly used in the different codes,
the fundamentals of this theory are described below first.

Fig. 1. The scheme of the space truss assumed in Rausch’s theory

3.1. Space-truss analogy

The first theory of reinforced concrete subjected to torsion was proposed by Rausch in
1929 in the form of a Ph.D. thesis. The first simplification is that the examined cross
section has an arbitrary shape and is assumed to be hollow. This assumption is based on
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theoretical foundations: the stresses in the core of the cross section are much lower than
at the perimeter. Later experiments also proved this assumption to be true. They showed
that the ultimate torque of hollow and solid members are more or less the same. After
cracking, the concrete is separated by cracks into a series of helical members. These
helical concrete members are assumed to interact with the longitudinal steel bars and the
hoop steel bars to form a space truss.

We shall now analyze the forces in the members of this space truss. First, the internal
forces in the longitudinal bars, the hoop bars, and the diagonal concrete struts are
denoted X, Y, and D, respectively. The force at each joint representing the shear flow is
designated F. Second, each force is labeled in sequence with subscripts from 1 to n along
the periphery of the cross section. Third, we notice that the internal forces X, Y, and D
must be identically distributed in each cell in the longitudinal direction.
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Fig.2. The forces acting in the joint Cr+1

If we take the equilibrium of joint Cr+1 in the longitudinal direction we can see that the
forces in the concrete struts are equal (D = constant). Secondly consider the equilibrium
of the joint in the lateral (or tangential) direction. Now we can take the same observation
for the forces in the stirrups (Y = constant). By studying the equilibrium of joint Cr+1 in
the radial direction, which is perpendicular to both the longitudinal and lateral directions,
we can be see that:

α⋅+α⋅= sinYcosXD

Now if we take a look at the sum of the forces outside a joint(D and X)  in the tangential
direction we can write:

α⋅α⋅+α⋅=α⋅= sin)sinYcosX(sinDF

Finally we can study the equilibrium of the whole cross section. The internal torques
contributed by F1 to Fn must be equal to the external torque T. Denoting the distance
from the force Fr to the axis of twist as ar, the internal torque due to Fr is Fr·ar. Summing
the internal torque for F1 to Fr and noticing that all the F forces have constant value:
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If we denote the spacing of longitudinal bars as b and the enclosed area inside a stirrup as
A we can write:
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Assuming that both the longitudinal bars and the stirrups are yielding at the ultimate
torque and that α = 45° we can obtain two values for the ultimate torsional moment:
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where: Al is the cross-sectional area of one longitudinal bar
fly is the yield strength of longitudinal bars
At is the cross-sectional area of one stirrup
fty is the yield strength of stirrups

3.2. Modifications on Rausch’s Theory

In 1935 Andersen pointed out that Rausch’s truss analogy assumed uniform stress along
all the reinforcement in a member subjected to torsion. This assumption of uniform
stress contradicts Saint-Venant’s stress distribution for all types of cross sections except
circular. In the case of a rectangular section Saint-Venant’s stress distribution requires
that maximum stress occur at the wider face and decrease zero at the corner. In view of
this non-uniform stress distribution in the steel the torsional resistance of reinforcement
should be less effective than that predicted by Rausch’s equations. Consequently,
Andersen suggested that Rausch’s results should be modified by an efficiency
coefficient that is less than unity. Later Cowan obtained a slightly different equation.
His result was based strictly on Saint-Venant’s stress and strain distribution for
rectangular cross sections. His final equation was:
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where: Te is the torsional resistance of unreinforced concrete taken as the elastic torque
x1 and y1 are the length of the arms of the stirrups

Cowan’s method, however, contains an error since it is based on Saint-
The validity of Saint-Venant’s theory is doubtful for the post-cracking range. Later  tests
have shown that the stress along the reinforcement are essentially uniform and do not
vary according to Saint-Venant’s distribution. Even so, the concept of using an efficiency
coefficient to improve Rausch’s torsional resistance has been widely accepted.

3.3. The skew-bending theory

This theory is much younger than Rausch’s.  It was first proposed by Lessig in 1958.
The basic characteristic of the skew-bending theory is the assumption of a skew failure
surface. The surface is initiated by a helical crack on three faces of a rectangular beam,
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while the ends of this helical crack are connected by a compression zone near the fourth
face.
The internal torsional resistance arises from three sources: the axial forces of the stirrups,
the shear-compression force of concrete, and the dowel forces of the longitudinal bars.
After some algebra Hsu obtained the following equation in 1968:
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x and y are the outer dimensions of the cross section
At is the cross-sectional area of one stirrup
Al is the area of all the longitudinal bars
fty is the yield strength of stirrups
fly is the yield strength of longitudinal bars
fc’ is the specified compressive strength of concrete
s is the stirrup spacing

Comparing the final equations obtained by the two different theories we can observe that
although they are not identical their structure is similar.

3.4. Codes

Both the Eurocode2 and the Hungarian Code are based on Rausch’s space truss theory
and the design method is the same in both. The engineer has calculate three different
ultimate values, for the longitudinal bars, for the stirrups, and for the diagonal concrete
struts. There are, however, two main differences. The first difference is the calculation of
the ultimate torsional moment in connection with the concrete. The second and more
important difference is that while the Hungarian Code uses a constant value (α = 45°) for
the angle of cracks and hence the concrete diagonals, the Eurocode2 allows it to change
(0.4 = ctgα = 2.5). This angle appears in all three prediction equations proposed by the
Eurocode2 and is hidden in the equations of the Hungarian Code as well.
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Table 1. Ultimate torsional moments according to the Codes
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4. EXPERIMENTS

At the Technical University of Budapest a series of tests were carried out with plain
concrete and reinforced concrete beam specimens loaded with pure torsion. The supports
allowed both rotating and lengthening of the elements. All the beams had the same outer
dimensions: 130⋅130⋅2000. There were five sets of beams each consisting of three
specimens. The reinforcement ratios were varied both in the longitudinal and the
transversal directions. The difference in the reinforcements can be seen in Table 2. To
apply the load, steel arms were attached to both ends of the beams (See Fig. 3.). The
actual loading was done by a hydraulic jack at one side but the force was measured on
both sides. The twist of the middle section (700 mm) was also measured by the shift of
attached arms. The force and the difference in the deflections were recorded by a plotter
to obtain a torque-twist diagram.

Fig.3. The layout of the torsional tests

Three methods were used to detect the cracking torsional moment. The first method was
the visual observation of the surface at every load step. As the cracks began at the middle
of the beams they were easily observable. The second method was the observation of the
torque-twist diagram. At cracking the torsional rigidity decreased significantly and
therefore the slope of the diagram decreased. The third method was the observation of
the sound of the cracking. The ultimate torsional moment was taken as the maximum
moment reached throughout the test. At every load step the cracks were marked. After
the tests these marks were drawn on paper so that the angle between the cracks and the
axis of the beam could be measured.

Beam Stirrups Longitudinal bars

A unreinforced
B φ6/130 4φ6
C φ6/65 4φ6
D φ6/130 8φ6
E φ6/65 8φ6

Table 2. Reinforcement details of the tested beams

Stirrups were closer together at the beam ends to ensure failure in the middle section.
The concrete used was C20 in all cases. The tensional strength was obtained by:
fct=0.3⋅fc

2/3 The steel was B.38.24 (fy = 240 N/mm2).
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5. RESULTS

5.1. Cracking moment

The values of the measured and calculated cracking moment are given in Table 3and
plotted in Fig. 1.The bald values in Table 3. Indicate that the calculated values that are
smaller than the measured ones. The diagrams illustrate the discrepancy between the
calculated and the measured values. The points that are below the solid lines represent
underestimation. The points above the diagonal lines represent an overestimation of the
loads. It is obvious from Fig. 4. that the elastic method, almost in all cases, gives a
conservative result and that the plastic method always gives an unconservative result. It
is also apparent from Fig. 4. that the best prediction is given by the skew-bending theory.
So for design purposes, the elastic method seems to be the most conservative and for
modeling, where we must be close to the exact value, the best is the skew-bending
theory.

Measured Elastic Plastic Skew-bending
A-1 1,61 1,13 1,81 1,54
A-2 1,69 1,32 2,11 1,79
A-3 - 1,24 1,98 1,68
B-1 - 1,45 2,32 1,97
B-2 1,40 1,51 2,42 2,05
B-3 1,64 1,43 2,30 1,95
C-1 1,79 1,47 2,36 2,01
C-2 1,89 1,47 2,36 2,01
C-3 1,63 1,41 2,26 1,92
D-1 1,73 1,29 2,07 1,76
D-2 1,69 1,49 2,40 2,04
D-3 1,69 1,47 2,36 2,01
E-1 2,25 1,55 2,49 2,12
E-2 1,69 1,48 2,38 2,02
E-3 2,06 1,52 2,44 2,07

Table 3. The measured and the calculated cracking moments (kNm)

Figure 4. Measured versus calculated cracking moments (a-elastic theory, b-plastic
theory, c-skew-bending theory) (kNm)

5.2 Ultimate moment

The measured and calculated ultimate moments are shown in Table 4. The results for the
unreinforced beams (A-1, A-2, A-3) can not be found there because for them cracking
means automatic failure. Because the beams in the same set had the same parameters the
average of the three is also listed. The next two columns contain the values for the ones

1

1,5

2

2,5

1 1,5 2 2,5

1

1,5

2

2,5

1 1,5 2 2,5
1

1,5

2

2,5

1 1,5 2 2,5

b, c,a,



8

calculated by Rausch’s theory assuming 45° cracks. These are the same as in the
Hungarian Code and in the Eurocode2. The first of the columns refers to the yielding of
the stirrups and the second is to the yielding of the longitudinal bars. In the last three
columns the values are different for every beam because the tensile strength of the
concrete appears in the equations which were used to calculate them.

If we used Cowan’s equation (TUC) the predicted results were always higher then the real
ones. On the other hand the skew-bending theory, (TUS), gave a lower value every time.
In the last column we can see the ultimate load for the concrete struts according to the
Hungarian Code. We can observe that this value is always much higher than any of the
others. This means that the failure should have occurred due to the yielding of the
reinforcement. This was proved by the tests: the cause of the failure for the reinforced
beams was the yielding of the reinforcement. One should also keep in mind that the
lowest value of the calculated three is the ultimate so the codes were conservative in all
the cases (the value for concrete failure was even higher for EC2).

Measured Average TUR1 TUR2 TUC TUS TUH3

B-1 2.00 2.40 1.34 6.12
B-2 2.00 1.88 1.20 1.20 2.46 1.38 6.51
B-3 1.64 2.39 1.33 6.03
C-1 2.54 3.38 1.36 6.28
C-2 2.25 2.33 2.39 1.20 3.38 1.36 6.28
C-3 2.21 3.32 1.31 5.87
D-1 1.79 2.25 1.23 5.16
D-2 2.25 2.03 1.20 2.39 2.45 1.37 6.43
D-3 2.06 2.43 1.36 6.28
E-1 3.38 3.47 1.41 6.82
E-2 2.85 3.15 2.39 2.39 3.40 1.36 6.35
E-3 3.23 3.43 1.40 6.59

Table 4. The measured and the calculated ultimate moments (kNm)

5.3 Angle of cracks

As previously mentioned the angle of the crack appears in the equations of the
Eurocode2. A similar equation can be obtained from Rausch’s model by equating the
ultimate torsional moments calculated for the failure of the longitudinal bars and for the
stirrups. The two different equations are:
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Both equations predict a reduced slope for the cracks if the longitudinal reinforcement
ratio is higher than the transversal (D) and the opposite if the stirrup spacing is smaller
(C). Furthermore according to the theory of Saint-Venant the angle of the first crack is
exactly 45° since at that stage we neglect the effects of the reinforcing. This angle should
change later showing the influence of the reinforcement ratio in the two directions. As
the angle changes the crack should rotate somehow with the increasing of the load. The
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results of the tests confirmed only the first part of this assumption. This can be seen in
Table 5., the angle of the cracks were close to 45° in every case. Unfortunately due to
the incoherent crack propagation, the small dimensions and limited number of the
specimens, no proof could be obtained for the second theoretical assumption.

Measured EC2 Rausch
B 54,4 45,0 45,0
C 50,1 54,7 63,4
D 51,4 35,2 26,6
E 47,6 45,0 45,0

Table 5. The angle of the cracks (degrees)

6. CONCLUSIONS

At the beginning of this paper a brief review of the methods for calculating the torsion of
reinforced concrete was presented. Later the results of the different equations for
cracking and ultimate moment were compared with the tests carried out at the Technical
University of Budapest.

The results showed good agreement with the theoretical values in case of the cracking
moment and showed that both Eurocode2 and the Hungarian Code were conservative in
predicting the ultimate load. Additionally the experiments could not verify the
assumption that the angle of the crack at failure highly depends on the reinforcement. In
the future we are planning to carry out more experiments on fiber reinforced concrete
elements.
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