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SUMMARY

The displacement model of the hybrid-Trefftz finite element formulation is applied to the
spectral elastodynamic analysis of bounded and unbounded media. Two alternative
elements to model unbounded media are developed and tested, namely a bounded finite
element with absorbing boundary conditions and an unbounded element that satisfies the
Sommerfeld condition. Numerical tests are presented to illustrate the performance of the
finite element formulation.
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1. INTRODUCTION

The theoretical basis for the development of the displacement and stress variants of the
hybrid-Trefftz finite element formulation for elastodynamic analysis in the frequency
domain is presented in [4].

The objective of this paper is to report on the numerical implementation of the
displacement model of the hybrid-Trefftz formulation in the analysis of both bounded and
unbounded media [6]. The element is hybrid because two fields are independently
approximated in the domain and on the boundary of the element. The Trefftz label
identifies the special feature of constraining the domain approximation basis to satisfy
locally the governing wave equation. Finally, the element is said to be a displacement
element because the displacement field is the one selected for direct approximation in the
domain of the element. Consistently with this design, the tractions or Cauchy stresses is
the boundary field, which is also approximated. The corresponding approximation basis
is used to enforce the inter-element and boundary displacement continuity conditions,
using a Galerkin technique. A comprehensive set of numerical tests, addressing the
analysis of both bounded and unbounded media are used to show the performance of the
present formulation. In the latter case, the solutions obtained with bounded finite
elements with absorbing boundary conditions and with unbounded elements that
implicitly satisfy the Sommerfeld condition are directly compared and assessed. Solutions
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obtained with the hybrid-Trefftz displacement elements are also compared with
alternative formulations.

2. FUNDAMENTAL RELATIONS

Let V represent the domain of the element and Γ the enveloping surface, referred to a
Cartesian system x. The fundamental frequency domain relations governing the linear
elastodynamic response of the structure to a non-trivial forcing frequency ω are the
following:

02 =+ uD ρωσ  in V (1) Γ= tNσ  on σΓ (4)

uD*=ε  in V (2) Γ= uu  on uΓ (5)

εσ k=  in V (3) cuN =σ  on aΓ (6)

For simplicity of the presentation, the effects of the body forces and of residual stresses
are neglected. The simulation of these effects as well as the representation of the forced
and free vibration modes and of the elastostatic response of the structure are
contemplated in [4] and [5].

In the dynamic equilibrium (1) and compatibility (2) equations, vectors σ and ε collect
the independent components of the stress and strain tensors and u is the displacement
vector. As a geometrically linear model is assumed, the differential equilibrium and
compatibility operators D and D* are linear and adjoint.

In the equilibrium (1) and the elasticity (3) conditions, the generalized mass ρ and
stiffness k matrices may not be Hermitian as they combine the mass ρo and the structural
do and the elastic ko and the material co damping effects, respectively:

oo di 1−−= ωρρ oo cikk ω+=

In the Neumann condition (4), vector tΓ defines the tractions prescribed on portion Γσ of
the boundary and the boundary equilibrium matrix N collects the components of the unit
outward normal vector associated with the differential operators present in D. In the
Dirichlet condition (5), vector uΓ defines the displacements prescribed on the
complementary portion of the boundary, Γu. In the Sommerfeld condition (6) for
unbounded media, c is the non-Hermitian damping matrix [7].

The equations summarized above are constrained to geometrically and physically linear
problems. However, they hold for inhomogeneous and multi-phase media and for
alternative structural models, as the variables, arrays and operators are identified above
in the generalized sense.

3. SPACE DISCRETIZATION

Let Ve denote the domain of a typical finite element and Γe to be the enveloping surface.
No particular constraints are placed on the geometry of the element, which may not be
convex, simply connected or bounded. However, as it is illustrated in Fig. l, the
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identification of the Dirichlet boundary Γu is extended to include the set of internal, inter-
element boundaries of the element when inserted in the finite element mesh. Moreover,
the Sommerfeld boundary Γa is non-empty only for the bounding elements subject to the
absorbing condition (6).

The approximations from which the hybrid-
Trefftz displacement element is derived from
are the following, where subscripts V, u and
a are used to identify arrays defined in the
domain Ve and on boundaries Γu and Γa,
respectively:

VV qUu =  in eV (7)

uu pTt =  on e
uΓ (8)

aa pTt =  on e
aΓ (9)

In the definitions above, matrices UV and Tu

and Ta collect displacement and traction
approximation functions. As they are
selected from hierarchical (non-nodal) bases,
the weighing vectors qV, and pu and pa

represent generalized displacements and
tractions. respectively.

Fig. 1: Identification of the Neumann,
Dirichlet and Sommerfedd boundaries.

The Trefftz constraint consists in assuming that the displacement approximation basis is
built on solutions of the governing wave equation, derived combining the equilibrium,
compatibility and elasticity equations (1) to (3):

(DkD* +ω 2ρ)UV = O  in Ve (10)

Consequently the displacement approximation (7) is uniquely associated with the strain
and stress fields (11) and (12), where EV = D*UV and SV = kEV:

VV qE=ε  in Ve (11)
VV qS=σ  in Ve (12)

It is important to note that the definitions above are not used as direct approximations in
the derivation of the hybrid-Trefftz displacement element. They are used in the post-
processing phase to compute the stress and strain fields in the element, while condition
(10) is exploited to obtain boundary integral expressions for matrices and vectors present
in the governing system.

4. FINITE ELEMENT EQUATIONS

Using the procedure presented in [4], extended now to include the Sommerfeld
absorbing boundary condition (6) and the approximation (9) for the associated tractions,
the following finite element governing system is found:
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The finite element arrays appearing in the system (13) are defined as follows:

e
V

T
V NSUD Γ= ∫Γ d (14) e

aa
T

aa TcTD Γ= −∫ d1 (17)

e
uu

T
Vu TUB Γ= ∫ d (15) eT

V tUp σΓ= ΓΓ ∫ d (18)

e
aa

T
Va TUB Γ= ∫ d (16) e

u
T

u uTq Γ= ΓΓ ∫ d (19)

In all the above equations, AT denotes the (conjugate) transpose of a real (complex) array
A. System (13) is Hermitian only when the same property applies to the local stiffness
and mass matrices k and c and when no Sommerfeld boundary or unbounded element
exists.

To assemble the system for a given finite element mesh, it suffices to assign symmetric
boundary traction distribution (8) to the corresponding sides of connected elements.
Vector pΓ is determined directly from definition (18), applied to the Neumann boundary
of the assembled mesh. The entries of vector qΓ are set to zero on inter-element
boundaries (average inter-element displacement continuity condition) and computed
from definition (19) on the Dirichlet boundary of the assembled mesh.

The assembled system is highly sparse and strongly localized, in the sense that the
generalized displacements qV and the tractions pa are strictly element dependent and the
generalized boundary tractions pu are shared only by pairs of connecting elements. This
property renders the hybrid-Trefftz displacement element particularly well suited to
parallel processing. The procedures used in the storing and solving these systems are
adapted to exploit their high sparsity.

5. APPROXIMATION BASES FOR BOUNDED ELEMENTS

The displacement approximation basis UV  is derived from the gradient and rotational
terms of the scalar potentials Φ1 and Φ2, respectively, which, when inserted in the wave
equation (10), are found to identify with the solution spaces of the Helmholtz equation
(20), where cl and c2 represent the propagation velocities of the P- and S-waves,
respectively:

0
2

2 =Φ







+Φ∇ k

k
k c

ω
(20)

Both Cartesian (x1,x2) and polar (r,θ) coordinate systems were used to model the
homogeneous and isotropic two-dimensional applications, which are associated with
displacement potentials based on exponential and Bessel functions, respectively. The
traction approximation basis on the Dirichlet and Sommerfeld boundaries is built on
Chebyshev polynomials, defined on the side coordinate system.
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6. APPROXIMATION BASES FOR UNBOUNDED ELEMENTS

As the Sommerfeld radiation condition is supposed to hold infinity [2], a clear limitation
in using the bounded elements with absorbing boundary is that Γa should be placed far
from the excitation source when modelling an infinite media.

The fact that the stress and displacement fields generated by the Helmholtz potential,
when a Hankel basis is used, satisfy locally the Sommerfeld condition for large
asymptotic approximations, suggests the extension of the hybrid-Trefftz displacement
formulation to unbounded elements. Hankel functions and Fourier approximations are
now used to build the traction approximation basis on the unbounded and bounded
Dirichlet domains, respectively. The particular geometry of the unbounded element can
be exploited to obtain closed form expressions for the arrays present in the governing
system. The formulae on indefinite integrals of products of Bessel functions collected in
[1] have been used to derive such formulae. However, the authors could not establish
such solutions for the integrals involving the direct interaction of P- and S-waves. The
corresponding coefficients are computed numerically, which poses particular difficulties
in terms of convergence due to the highly oscillatory nature of the integrand function.
This difficulty is not experienced in the integration of the bounded element matrices and
represents the price paid to avoid dimensioning a priori the finite element mesh to locate
conveniently the absorbing boundary.

7. NUMERICAL TESTS

7.1. Comparison of the F.E. solutions with the elementary rod theory

The plate subject to a sinusoidal load shown in Fig. 2 is analyzed using a single element
and Fourier and Bessel bases, with 44 and 38 degrees of freedom, respectively.

]N/m[102 211⋅=E ]N/m[1=op

]m[1=L ]rad/s[700=ω

0=ν ]kg/m[108 33⋅=ρ

]m[1,0=h ]N[sin thpP o ω=

Fig. 2: Plate under sinusoidal axial load

The results presented in Tab. 1 are computed at time t=0.0024 [s] and compared with
the analytical solution of the elementary rod theory:

( ) t
kLkEA

kxP
txu ωsin

cos

sin
, = , where 

E
k

ρ
ω=  and hpP o= .
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Displacements 1210−× Axial force 110−×

x Analytic Fourier Bessel Analytic Fourier Bessel

0.0 0.00000 0.00000 0.00000 1.00387 1.00387 1.00387

0.2 1.00373 1.00373 1.00373 1.00347 1.00347 1.00347

0.4 2.00668 2.00668 2.00668 1.00229 1.00229 1.00229

0.6 3.00805 3.00805 3.00806 1.00033 1.00033 1.00033

0.8 4.00707 4.00707 4.00707 0.99758 0.99758 0.99758

1.0 5.00294 5.00294 5.00295 0.99404 0.99404 0.99404

Tab. 1: Vibrating rod test.

7.2. Semi-infinite media with known analytical solution

The semi-infinite media with symmetric boundary conditions presented in Fig. 3 has the
following analytic solution in displacements,
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where J1 and Y1 represent the first order Bessel functions of the first and second kind,
respectively. The results obtained for E = 1, v = 0.25, ρ =1 and ω =1 are presented in
Fig. 3.

Fig. 3: Horizontal displacement on the side y=0 at t=1.57 s.

When one semi-infinite element is used to solve the problem, test T0 in Fig. 3, the exact
solution (21) is recovered because it is contained in the Hankel approximation basis.
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Tests T1 (14 elements with 1644 degrees of freedom) and T4 (30 elements with 3484
degrees of freedom) are obtained with bounded elements with absorbing boundary
placed at r = 14 and r = 33, respectively. Test T2 has 1972 degrees of freedom. It is
based on the finite element mesh of test T1 with the absorbing boundary being replaced
by 4 semi-infinite elements. Test T3 is the p-refinement of test T2 for 2312 degrees of
freedom. Tests T1 and T4 show that the accuracy of the bounded element solution
improves with the distance of the absorbing boundary at the cost of increasing
significantly the number of finite elements. The tests with unbounded elements show a
faster convergence rate with the advantage of not depending on the choice of positioning
the absorbing boundary and at the expense of involving the computation of unbounded
integrals.

7.3. Half space subject to an harmonic vertical load

The elastic half space subject to a harmonic distributed load shown in Fig. 4 is
investigated in [8, 3]. The dimensionless radiation impedance, defined as
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where zu  is the average vertical displacement under the loading strip, is used to compare
the analytical results with the ones obtained using the spectral and the present
formulation. The values obtained are given in Tab. 2. where nω = B

nω /c1 is the

dimensionless frequency.

]N/m[1023733.2 28⋅=λ m/s][674.2622 =c

]N/m[10119.1 28⋅=µ m][5.0=B

]kg/m[8.1621 3=ρ ]N/m[1 2=zT

m/s][308.5251 =c

Fig. 4: Half space subject to a harmonic vertical load.

Analytical [8] Spectral [3] Hvbrid-Trefftz
nω Re( zu ) Im( zu )

nz Re( zu ) Im( zu )
nz Re( zu ) Im( zu )

nz

0.1 1.21 -1.77 2.14 1.29 -1.72 2.15 1.13 -1.79 2.11
0.2 0.96 -0.97 1.36 1.01 -0.94 1.38 0.94 -0.83 1.26
0.3 0.87 -0.66 1.09 0.90 -0.63 1.10 0.70 -0.66 0.96
0.4 0.83 -0.47 0.95 0.86 -0.45 0.96 0. r' 7 -0.20 0.79
0.5 0.81 -0.34 0.88 0.84 -0.32 0.89 0.80 -0.31 0.86

Tab. 2: Dimensionless radiation impedance.

The amplitude of the displacement field is presented in Fig. 5 for the 5 frequencies
considered, in domain 0 < r < 35 [m].
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Fig. 5: Amplitude of the displacement field ( 1ω  . . . 5ω ).

8. CONCLUSIONS

The use of unbounded elements in the modelling of a semi-infinite media provides a
faster convergence of the finite element solution and eliminates the necessity of choosing
the position of the absorbing boundary. However these elements involve the numerical
computation of highly oscillatory unbounded integrals which represent a hard task from
the computational point of view. These numerical difficulties can be avoided using
bounded elements; with the cost of having to choose apriori the position of the absorbing
boundary. Moreover the convergence of the solution is slower.

9. ACKNOWLEDGMENT

This work is part of the research developed at ICIST, Instituto Superior Técnico, and
has been supported by Fundação para Ciência a Tecnologia through project
PRAXIS/2/2.1/CEG/33/94.

10. REFERENCES

[1] Abramowitz, M. and Stegun, I. (1972), Handbook of Mathematical Functions With
Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series * 55, National
Bureau of Standards, 10th edition.

[2] Achenbach, J. D. (1973), Wave propagation in elastic solids, Vo1.16 of North-Holland
Series in Applied Mathematics and Mechanics, North-Holland Publishing Company,
Amsterdam.

[3] Degrande, G. (1992), A Spectral and Finite Element Method for Wave Propagation in Dry
and Saturated Poroelastic Media, Ph.D. thesis, Katholieke Universiteit to Leuven, Belgium.

[4] Freitas, J. A. T. (1997), "Hybrid-Trefftz displacement and stress elements for elastodynamic
analysis in the frequency domain", Computer Assisted Mechanics and Engineering Science,
Vol.4, pp. 345-368.

[5] Freitas, J. A. T. (1998), "Hybrid finite element formulation for elastodynamic analysis in the
frequency domain", International Journal of Solids and Structures, in press.

[6] Freitas, J. A. T. and C., Cismasiu (1998), "Hybrid-Trefftz Displacement Element for Spectral
Analysis of Bounded And Unbounded Media", to be published.

[7] Lysmer, J. and Kuhlemeyer, R. L. (1969), "Finite dynamic model for infinite media", Journal
of the Soil Mechanics and Foundation Division, Proceedings of the ASCE, Vo1.95,
No.SM4, pp. 859-877.

[8] Miller, G. F. and H., P. (1954), "The field and radiation impedance of mechanical radiators
on free surface of a semi-infinite isotropic solid", in Proceedings of the Royal Society of
London, Vol.A 223, pp.521-541.


