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EXTENDED RANKINE FAILURE CRITERIA FOR 
CONCRETE

Andor Windisch

As possible failure criteria MC2010 refers to those of Rankine, Drucker-Prager and Mohr-Coulomb, re-
spectively, and to modifications or combinations of them. After a brief overview of these failure criteria 
the characteristics of Mohr-circle are described. Next chapter discusses why the Modified Mohr–Coulomb 
failure criterion fails in case of concrete. Displaying the Mohr-circles of different bi- and triaxial test se-
ries reveal that neither the straight nor the parabolic failure criteria fit. The failure patterns of uniaxial 
compressive and tensile test specimens prove that concrete fails due to principal tensile stresses/strains in 
separation and concrete is not a frictional material. The proposed Extended Rankine failure criteria are 
based directly on the principal stresses.

The criteria limit the greatest- and the actual smallest principal stress, respectively. This latter is func-
tion of the two other principal stresses. It is shown that the Ultimate Strength Surface cannot be properly 
described as stated by CEB Bulletin Nr. 156 

Keywords: failure criterion, Rankine, Mohr-circle, Mohr-Coulomb criterion, friction, sliding, separation, principal stress, shear stress

1.  INTRODUCTION
MC2010 5.1.8.3 gives the following guidelines about the 
possible yield functions of concrete under multiaxial states 
of stresses:

“Basically, yield functions f and plastic potentials g can 
be chosen based on multi-axial failure criteria for concrete. 
These criteria should depend not only on shear stresses, but 
also on the first invariant I1 of the stress tensor to consider the 
influence of the hydrostatic pressure on the ductility of the 
material. Thus, formulations as the 
- Rankine criterion, where tensile failure occurs when the 

maximum principal stress reaches the uniaxial tensile 
strength fct; refer to Rankine, W.J.M., “A Manual of Ap-
plied Mechanics”, (London, 1868)

- Drucker-Prager criterion, which is the modification of von 
Mises criterion including the influence of hydrostatic pres-
sure on yielding; refer to Drucker, D.C.; Prager, W., “Soil 
mechanics and plastic analysis of limit design” (Quarterly 
of Applied Mechanics, Vol. 10, 1952),

- Mohr-Coulomb criterion, where the maximum shear stress 
is the decisive measure of yielding, and the critical shear 
stress value depends on hydrostatic pressure; refer to 
Mohr, O., “Scientific paper on the area of technical me-
chanics ” (Ernst & Sohn, Berlin, 1906; in German),

and modifications or combinations of them can be used in 
concrete plasticity models.”

After a brief overview about the different failure criteria 
and about the characteristics of Mohr-circle we discuss why 
the modified Mohr–Coulomb failure criterion does not fit in 
case of concrete. Thereafter an extended Rankine failure cri-
terion is proposed. This criterion is based directly on the prin-
cipal stresses for both, the tensile and the compression failure 
and is valid in case of triaxial states of stress, too.

2.  BRIEF PRELIMINARY OVERVIEW

2.1 Failure criteria
Here are the relevant failure criteria briefly recalled.
Coulomb presented in 1776 his frictional hypothesis: failure 
often occurs along certain sliding planes, the resistance of 
which is determined by a parameter termed the cohesion and 
an internal friction, the magnitude of which depends on the 
normal stress in the sliding plane (Figure 1).

Note: Coulomb dealt with friction between two indepen-
dent solid bodies separated already through a plane surface. 
His hypothesis does not apply to separate (fail) a solid body 
into two parts. After the force parallel to the contact surface 
has overcome the resting frictional force, the two bodies slide 
on each other.

Rankine stated in his 1876 published model that a body 
fails when any of the three principal stresses exceeds the ulti-
mate tensile strength, regardless of the magnitude of the other 
principal stresses.

In 1868 Tresca postulated for mild steel that failure occurs 
when the maximum value of the shear stress is exceeded.

In 1882 Mohr assumed that failure occurs when the stress-
es in a section satisfy the condition:

f(σ, τ) = 0          (1)

This function displaced in the σ, τ coordinate system 
yields Mohr’s failure envelop (Figure 2). Its simplest form 
can be got as it just touches the Mohr’s circles corresponding 
to the uniaxial tensile strength (σ1, 0) and uniaxial compres-
sive strength (σ3, 0).

Leon (1935) realized that some test results of Mörsch on 
concrete specimens were in contradiction to the failure crite-
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rion of Mohr with the straight envelop. This would anticipate 
that the failure section at tensile test occurs under the same 
inclination φ/2 as in case of compression, which is not the 
case. A parabolic envelop was introduced: it is symmetric to 
σ-axis, its apex touches the circle corresponding to the uni-
axial tensile test at ft. In addition, the parabola tangents the 
Mohr-circle of the uniaxial compression test. Figure 3 shows 
this parabola corresponding to the ratio fc/ft = 14, and three 
circles representing some tests of Mörsch.

The equation of the envelop is:

𝜎𝜎𝜎𝜎(𝜏𝜏𝜏𝜏) =  −  1
2𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡+ 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐−�𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡+ 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐)

  ∙ 𝜏𝜏𝜏𝜏2 + 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 (2)

𝜏𝜏𝜏𝜏 =  𝜎𝜎𝜎𝜎 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐 (3)

𝜎𝜎𝜎𝜎 = 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚 −  𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;         𝜏𝜏𝜏𝜏 =  𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 (4)

𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 =  𝜎𝜎𝜎𝜎1− 𝜎𝜎𝜎𝜎3
2

 ;  𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚 =  𝜎𝜎𝜎𝜎1+ 𝜎𝜎𝜎𝜎3
2

(5)
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(𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐′∗)2 + (𝜒𝜒𝜒𝜒 ∙  𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡∗  )2 =  𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐′
2 (6b)

σ3 = Φ(σ1, σ2) (7)

 

       (2)

Both, Coulomb’s hypothesis and Leon’s parabola are de-
fined by two parameters only, which generally are not suf-
ficient to fit the experimental data. The simplest extension 
(one more parameter) is the tension cutoff: the greatest tensile 
principal stress is limited: a combination of Coulomb’s fric-
tion hypothesis with Rankine’s principal stress hypothesis to 
describe a separation failure (Figure 4). An advantage of this 

Modified Coulomb Criteria is that the tensile strength (the 
third parameter) may be varied independently of the two oth-
ers.

A Modified Coulomb Material can reveal sliding failure 
and separation failure (Figure 4). At sliding failure a motion 
parallel to the failure surface occurs, while the relative motion 
at separation failure is perpendicular to the failure surface. 

2.2  Mohr’s Circle
As Mohr’s circle plays a central role in this proposal some of 
its characteristics shall be brush up here.

Mohr’s circle is a two-dimensional graphical representa-
tion of the transformation law for the Cauchy stress tensor. It 
is used for calculating stresses at a particular material point 

Figure 1: Coulomb’s frictional hypothesis

Figure 2: Mohr’s failure envelope

Figure 3: Parabolic rupture criterion for concrete in plane stress coor-
dinate system as presented by Leon

Figure 4: Modified Coulomb rupture criterion
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with respect to a coordinate system in many planes by reduc-
ing them to vertical and horizontal components. These are 
called principal planes in which principal stresses are cal-
culated; Mohr’s circle can also be used to find the principal 
planes and the principal stresses in a graphical representation 
and is one of the easiest ways to do so.

The abscissa and ordinate (σ, τ) of each point on the cir-
cle are the magnitudes of the normal stress and shear stress 
components, respectively, acting on the rotated coordinate 
system. In other words, the circle is the focus of points that 
represent the state of stress on individual planes at all their 
orientations, where the axes represent the principal axes of 
the stress elements. 

Note: for a Mohr’s circle for plane stress state three stress 
components are needed: σx, σy and τxy, i.e. two (σ, τ) are not 
enough. 

Note: Having a Mohr-circle which pertains to a failure 
then in principle each point on this circle represents the fail-
ure. The point where the circle touches the (correct?) Modi-
fied Coulomb border line (which needs not to be straight) has 
no privileged importance. Concrete does not fail in shear/
sliding but in all cases in tension/tensile cracking/separation. 

Note: the ‘shear stress’ is an auxiliary parameter only, a 
stress component. It characterizes the stress in the structural 
material at a given point only in conjunction with the normal 
stress components. Concrete has no shear strength. The load-
ing pattern ‘pure shear’ results in two principal stresses of the 
same size as the shear stress, acting in ±45° planes. The sepa-
ration failure occurs when the size of principal tensile stress 
reaches the actual tensile strength. No sign of shear failure or 
of sliding!

For a general three-dimensional case of stresses at a point, 
the values of the principal stresses (σ1, σ2, σ3) and their prin-
cipal directions (n1, n2, n3) must be first evaluated. Based on 
the three principal stresses the three Mohr-circles having their 
centers on the σn axis between the points with the abscissas σ1 
vs. σ2, σ1 vs. σ3 and σ2 vs. σ3 resp. can be drawn. 

3.  WHY THE MODIFIED MOHR–
COULOMB FAILURE CRITERION 
FAILS IN CASE OF CONCRETE?

It is generally accepted that the failure criterion of concrete is 
well described as a Modified Coulomb Material. The Mohr–
Coulomb failure criterion represents the linear envelope that 
is obtained from a plot of the shear strength of a material 
versus the applied normal stress. This relation is expressed as 
𝜎𝜎𝜎𝜎(𝜏𝜏𝜏𝜏) =  −  1

2𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡+ 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐−�𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡+ 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐)
  ∙ 𝜏𝜏𝜏𝜏2 + 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 (2)

𝜏𝜏𝜏𝜏 =  𝜎𝜎𝜎𝜎 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐 (3)

𝜎𝜎𝜎𝜎 = 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚 −  𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;         𝜏𝜏𝜏𝜏 =  𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 (4)

𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 =  𝜎𝜎𝜎𝜎1− 𝜎𝜎𝜎𝜎3
2

 ;  𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚 =  𝜎𝜎𝜎𝜎1+ 𝜎𝜎𝜎𝜎3
2
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        (3)

where τ is the shear stress, σ  is the normal stress, c  is the 
intercept of the failure envelope with the τ  axis, and tanφ 
is the slope of the failure envelope. The quantity c  is often 
called the cohesion and the angle φ is called the angle of in-φ is called the angle of in- is called the angle of in-
ternal friction. Compression is assumed to be positive in the 
following discussion. (If compression is assumed to be nega-
tive then σ  should be replaced with − σ)

If φ = 0, the Mohr–Coulomb criterion reduces to the Tresca 
criterion. On the other hand, if φ = 90°  the Mohr–Coulomb 
model is equivalent to the Rankine model. Higher values of  
φ are not allowed. 

Important note: in case of φ < 90° sliding failure should 

occur whereas at φ = 90° separation failure appears! An odd 
change! 

Figure 5 presents the Mohr-circles (normalized with fc’) 
for uniaxial compression, uniaxial tension and ‘pure shear’ 
of a concrete with fct / fc’ = 0.1 (approx. C30) and the lines 
corresponding to ‘separation’ and ‘sliding’, resp. The figure 
reveals that the “cohesion” ‒ implied at Coulomb’s friction 
law – is in case of concrete not a material characteristic. It 
is simply only the length of a section along the shear – axis 
cut by a trend line (which is maybe even not straight) which 
cannot be determined in a test. Please note that – as the ratio 
fct/fc’ changes acc. to the class of concrete – both lines of the 
Modified Coulomb failure criteria (the abscissa of separation 
and the inclination, tanϕ, of segregation) differ acc. to the 
concrete class.

The use of Modified Coulomb Material is forced by re-
searchers of shear and torsion design who apply in their mod-
els stress fields with uniaxial pressure which fail in inclined 
sliding. They must adhere to the existence of inclined cracks 
to load direction (see Figure 6), even in case of uniaxial ten-
sion (besides ‘normal’ separation cracks  Figure 7).

Note: inclined cracks to load direction can have two sour-
ces:
- Some ‘subversive‘ influences e.g. friction between loading 

plate and specimen: the tensile crack develops well per-
pendicular to the real tensile principal stresses, or

- Tensile cracks developed during an independent, previous 
loading situation. Here we remind you that the theory of 
plasticity is valid only if all external loads increase in pro-
portion to one another, one-parametric loading!
The appearance of a sliding failure along a surface inclined 

to the axis of the in compression loaded specimen may have 
arisen at ordinary loading tests where the friction between 
the metal loading plate and the specimen hindered the lat-
eral deformation of the specimen thus producing a shear-like 
supplementary loading which turned the direction of the prin-
cipal stresses. Remember: in order to minimize this friction 
Kupfer (1973) loaded his test specimens through a metal 
brush thus reduced the shear stresses there. The failures of his 
specimens occurred as tensile (separation) failures in form of 
discrete cracks parallel to the plane of loading.

From Mohr’s circle we have:

𝜎𝜎𝜎𝜎(𝜏𝜏𝜏𝜏) =  −  1
2𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡+ 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐−�𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡+ 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐)

  ∙ 𝜏𝜏𝜏𝜏2 + 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 (2)

𝜏𝜏𝜏𝜏 =  𝜎𝜎𝜎𝜎 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐 (3)

𝜎𝜎𝜎𝜎 = 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚 −  𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;         𝜏𝜏𝜏𝜏 =  𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 (4)

𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 =  𝜎𝜎𝜎𝜎1− 𝜎𝜎𝜎𝜎3
2

 ;  𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚 =  𝜎𝜎𝜎𝜎1+ 𝜎𝜎𝜎𝜎3
2
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2 (6b)

σ3 = Φ(σ1, σ2) (7)

 

        (4)

where

𝜎𝜎𝜎𝜎(𝜏𝜏𝜏𝜏) =  −  1
2𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡+ 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐−�𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡+ 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐)

  ∙ 𝜏𝜏𝜏𝜏2 + 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 (2)

𝜏𝜏𝜏𝜏 =  𝜎𝜎𝜎𝜎 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐 (3)

𝜎𝜎𝜎𝜎 = 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚 −  𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;         𝜏𝜏𝜏𝜏 =  𝜏𝜏𝜏𝜏𝑚𝑚𝑚𝑚 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 (4)
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σ3 = Φ(σ1, σ2) (7)

 

        (5)

Figure 5: Normalized Mohr-circles define the Modified Coulomb 
failure criteria
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Figure 7: Sliding (left) and separation 
(right) failure, both might occur in case of 
pure tension acc. to Nielsen, (2011)

Figure 6: Sliding 
failure in case of 
pure compression as 
presented by Nielsen 
(2011)

and σ1 is the maximum principal stress and σ3 is the mini-
mum principal stress. 

Note: σm is the abscissa of the center of Mohr-circle where-
as τm is its radius.

In the following the Mohr-circles of well-known results of 
Kupfer’s biaxial tests should be presented in Modified Cou-
lomb rupture criterion for concrete, see Fig. 8.

Kupfer’s tests can be classified into three groups:
- tension-tension
- tension-compression
- compression-compression

Please note: there is no word about ‘pure shear’ or shear 
strength.

With reference to the χ-ratio proposed by Windisch (2021) 
the relationship fct* vs. fc* can be reasonably well described 
with
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Figure 8 shows the Mohr-circle representations of the ten-
sion-compression region of Kupfer’s (1973) biaxial tests. It is 
clear: here separation failures occur.

Note: the sizes of the biaxial tensile strengths depend on 
the size of the compressive stress hence the three Mohr-cir-
cles intersect the +σ1 axis at different abscissas.  

Figure 9 presents the Mohr-circles of the compression-
compression region of Kupfer’s biaxial tests. Here it becomes 
clear that all three principal stresses (σ1= 0, too) need to be 
taken into account for the Mohr-circle representation other-
wise the Mohr-circle of the biaxial compressive stress state 
will shrink to a point.

Showing the Mohr-circles for different σ1/fc’ vs. σ3/fc’ ra-
tios Figure 9 reveals that in the compression-compression re-
gion the Modified Coulomb rupture criterion does not apply 
(no common tangent line is possible). In fact, in all loading 
cases not sliding failures but separation failures occur.

Figure 8: Mohr-circles of biaxial tension-compression and σ1 = σ2 
compression-compression tests with different σ2u-values as tested by 
Kupfer (fc’ = 20 N/mm²)

Figure 10 shows the σn / fc’ ≥ -2 region (fc’ = 72 N/mm²) 
of the Mohr-circles as measured by Speck (2007) in her 1D 
- 3D tests. The markings in Fig. 10 mean: 1D:  uniaxial; 2D 
0.2: biaxial, σ2n/σ3u = 0.2; .05 0.2: 3D, σ1n/σ3u = 0.05, σ2n/σ3u = 
0.2. The positions of the circles reveal that neither the Mohr-
Coulomb criterion (straight tangenting each circle) nor the 
Leon criterion (parabola with its tip at the tensile strength) 
could function as general failure criterion. It must be once 
more be emphasized that both, Mohr-Coulomb and Leon 
with their sliding failures are valid when the solid body is 
already separated in two parts through cracking, that contra-
dicts the fundamental assumption (one parametric loading) of 
plastic theory.

Figure 9: Normalized Mohr-circles of compression-compression tests 
with different σ2/fc‘ ratios by Kupfer (fc’ = 20 N/mm²)

Figure 10: Mohr-circles of compression-compression bi- and triaxial 
tests of Speck (fc’ = 72 N/mm²)
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4.  EXTENDED RANKINE FAILURE 
CRITERIA FOR CONCRETE

The proposed Extended Rankine failure criteria are based di-
rectly on the principal stresses.

The Mohr-circle is applied acc. to its original purpose: a 
transparent geometrical method to determine the size and di-
rection (inclination) of the principal stresses from the stress 
components given in a global coordinate system.

The Extended Rankine failure criteria are
- the greatest (>0) principal stress, σ1, cannot be greater than 

the actual tensile strength (its size depends on the size of 
the σ2 and σ3 principal stresses if at least one of them is 
compressive stress. (In case of the original Rankine crite-
rion one (fix) tensile strength governed.)

- the triple of the compressive principal stresses 
σ3 = Φ(σ1, σ2) cannot be smaller than the actual smallest 
principal strength, σ3, which is function of the two other 
principal stresses:

σ3 = Φ(σ1, σ2)           (7)

Note: In this paper the data measured by Speck (2007) in 
her multiaxial compressive tests were evaluated. The results 
of the bi- and triaxial compression tests of the literature are 
evaluated and discussed in a next paper of the author.

It is known that lateral compressive stresses and/or hin-
dered transverse deformations (confinement) let increase the 
compressive strength in the longitudinal direction. Ottosen 

(1977) and other researcher (CEB 1983) who use the hydro-
static- and deviatory stresses (octahedral normal- and shear 
stresses) claim that the form of the Ultimate Strength Sur-
face (USS) can be calibrated with four strength values: the 
uniaxial tensile strength, the uniaxial compressive strength 
(point on the compressive meridian), the biaxial compressive 
strength (point on the tensile meridian), and a triaxial com-
pressive strength at one point on the compressive meridian 
(σ1 = σ2 > σ3).

Figure 11 should reveal that the three a.m. calibrating 
strength values (marked with the red arrows) cannot properly 
characterize the monotone increasing, continuous function of 
the USS (as deduced from the test results of Speck, 2007).

Figure 11 shows the local ordinates of normalized σ3/fc’ = 
Φ(σ1/fc’, σ2/fc’) function as deduced from the bi- and triaxial 
tests measured by Speck on fc’ = 72 N/mm² test specimens.

Figure 12 presents the USS in another form: the abscissa 
is γ = σ1 / σ3, the ordinate is λ = σ2 / σ3. The USS increases 
monotonic in the γ-direction, whereas increases up to λ = 0.5 
~ 0.6 then decreases moderately.

Having determined the relevant failure causing principal 
stresses the corresponding normal- and shear stress compo-
nents in the global coordinate system can be determined us-
ing Mohr-circles of the tensor calculus. Note: the global shear 
stress components calculated from the failure causing princi-
pal stresses refer by no means to shear failure!

Concrete fails due to the tensile deformations perpendicu-
lar to the axis with the maximum principal stress (smallest 
compressive stress). 

Figure 11: Relative increase of the bi- and triaxial compressive strength as function of both other relative compressive stresses
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Figure 12: The Ultimate Strength Surface compiled from the data 
measured by Speck (2007)

The type of failure is in all cases separation, i.e. discrete 
cracks occur perpendicular to the direction of the greatest and 
possibly of the intermediate principal stress, resp.

In biaxial compression tests the direction of the transverse 
tensile deformations is given: the “third” axis (here it should 
be marked as axis 1). In case of Kupfer’s biaxial panel tests 
the cracks developed perpendicular to the panel and parallel 
with the middle plane, resp.

Speck, who paid great attention to reduce the friction be-
tween the loading device and the test specimens, in all load-
ing cases –whether uni,- bi- or triaxial loading, compression 
or tension, or mixed- found always separation failures (Fig-
ure 13), and she is right.

Separation failure (in form of discrete tensile cracks) oc-
curs when the greatest of the principal stresses equals with 
the actual tensile strength or the smallest (greatest negative) 
principal stress reaches the actual 2D or 3D compressive 
strength. The failure occurs along the principal plane which 
is at an angle ϕ with axis x (this is the third component of the 
Mohr-circle besides the two principal stresses.

The Mohr-Coulomb failure criteria are not valid for con-
crete. Concrete is definitely not a frictional material.

The author hopes that with introduction of the failure crite-
rion based on the principal stresses the wrong ways caused by 
the central reference to the sliding failures and ultimate shear 
stresses, a better and material  appropriate description of the 
damage-theory etc. can be developed.

5.  CONCLUSIONS
The Mohr-Coulomb failure criteria are inadequate to describe 
the bi- and triaxial failure characteritics of concrete.

Applying them for the evaluation of the test results given 
in the literature proves that neither a straight nor a curved line 
can be fitted to the Mohr-circles representing the 2D and 3D 
strength values.

Further problems are:
•	 the Coulomb-criteria refers to already existing failure sur-

faces only.
•	 The Mohr-circles are a useful and visually attractive geo-

metrical interpretation of the stress-transformation be-
tween different axis-systems, moreover in 2D only, not 
more.

•	 The Mohr failure criterion does not consider the interme-
diate stress component which is an important influencing 
factor of the ultimate failure strength

•	 The “shear stress” is “produced” by our hugging to the 
global coordinate system. Nature and concrete do not 
“know” it.

Figure 13: Separation failures in case of uniaxial compression- and 
tensile tests as presented by Speck (2007)

•	 Concrete obeys principal stresses only. 
•	 Concrete fails in tension, in form of separation cracks.
•	 Concrete has no shear strength!
•	 The researchers were misled by the failure patterns of the 

specimens loaded with friction between its surface and the 
loading plate.
Summarizing: for concrete the Mohr-Coulomb failure cri-

teria cannot be applied and concrete is definitely not a fric-
tional material.

Extended Rankine failure criteria based directly on the 
principal stresses are proposed:
- the greatest (>0) principal stress, σ1, cannot be greater than 

the actual tensile strength (its size depends on the size of 
the σ2 and σ3 principal stresses if at least one of them is 
compressive stress. (In case of the original Rankine crite-
rion one (fix) tensile strength governed.)

- the triple of the compressive principal stresses σ3 = Φ(σ1, 
σ2) cannot be smaller than the actual smallest principal 
strength, σ3, which is function of the two other principal 
stress components, σ3 = Φ(σ1, σ2).
The author hopes that with introduction of the Extended 

Rankine failure criteria based on the principal stresses a ma-
terial-appropriate description of the damage-theory etc. can 
be developed.
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7.  NOTATIONS
c  cohesion
f   yield function (MC2010)
fc, fc’  concrete compressive strength
fc*, fct*  ultimate strength (compression and tension  
  resp.) in 2D and/or 3D loading
fct, ft, fA  tensile strength
fctm  mean tensile strength
g  plastic potential (MC2010)
φ  inclination of the sliding surface
ϕ  angle of internal friction

γ = σ1 / σ3 loading parameter
λ= σ2 / σ3 loading parameter
χ = fck/fctm ratio of characteristic concrete compres- 
  sive strength to mean tensile strength
σ1, σ2, σ3  principal stresses (σ1≥ σ2≥ σ3)
σ3u  ultimate strength measured in test
σcom   hydrostatic normal stress
µ  friction coefficient
σ, σn  normal stress component
τ, τn  shear stress component
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