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SUMMARY
The national and international codes and standards and the literature consider the stress patterns either in 
case of a single crack or of equidistant primary cracks which developed at the same load level. Moreover, 
most FE models consider smeared cracks which do not allow for any insight in the real inner behavior of 
structural concrete. This paper considers the stochastic character of the concrete tensile strength’s distri-
bution along the reinforced concrete element and a realistic local bond stress vs. slip relationship with its 
hysteretic character when the sign of local slip changes due to the occurrence of a new primary crack.
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NOTATIONS
a, b, c	 coefficients of a local bond stress-slip function
a	 crack spacing
cs	 rib spacing on the rebar surface
ds	 rebar diameter
fcti, fctk, fct i+1	 (βbZi) concrete tensile strengths
fctm	 mean concrete tensile strength
fR	 relative rib area
ℓbi	 transfer length
u	 perimeter of a rebar
v	 slip
xi	 coordinates along the axis x
w	 crack width
Ac	 cross section area of concrete 
As	 cross section area of the rebars in the cross section
A0	 uncracked ideal concrete cross section
Ec	 Young’s Modulus of concrete 
Es	 Young’s Modulus of steel (rebar)
N	 axial tensile force
αE	 Es / Ec
βw	 concrete cube strength
ρ	 geometrical rate of reinforcement
σc	 concrete stress
σc	 concrete tensile stress
σs	 steel (rebar) stress
τv(x)	 local bond stress
Lower case letters
I, II	 uncracked and cracked cross sections (state I and II), 

resp.

1.			  INTRODUCTION
This paper discusses the steel stress distribution between two 
primary cracks which develop at different load levels one after 
another in different distances from each other. This treatise was 

part of an article which was first published in 1989 in German 
in a festive collection of articles published on the occasion of 
Professor Rehm’s 65th birthday. Nevertheless, as a German 
language paper published in a local occasional publication, 
it was not available to the professional public. Until now no 
similar results have been published in the literature, while the 
stress distribution between the two primary cracks provides 
an important insight into the behavior of reinforced concrete 
structures. The common FEM models for members in tension 
and bending consider smeared cracks which develop at the 
same load level.

In this article a continuous crack theory is explained, 
which considers 
-	 the stochastic character of the concrete tensile strength’s 

distribution along the reinforced concrete element and 
-	 a realistic local bond stress vs. slip relationship, with the 

influence of a change in sign of the relative slip between 
reinforcing steel and concrete.
Note: in this paper Goto-cracks and secondary cracks are 

not treated. Details see in Windisch (2016, 2017)

2.		 CONTINUOUS CRACK 
FORMATION IN MEMBERS IN 
TENSION

This section describes the development of the crack pattern 
in a prismatic r.c. member in centric tension with a known 
distribution of the concrete tensile strength. It is shown that 
the terms “crack formation stage” and “stabilized cracking 
stage” and the like always appear in reality side by side and 
the stochastic character of the crack formation that can be 
observed in the experiments can be easily explained.

Figure 1a shows a simplified distribution of the concrete 
tensile strength along an r.c. member. 

The tensile force N is increased monotonically. In the non-
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cracked state, the concrete and steel stresses are constant - 
apart from the transfer lengths at the member’s ends

σc = σcI = N / A0		  σs = αE ∙ σcI

(Note: in the original figures the concrete tensile stresses are 
marked as ßbZi.)
At the tensile force level: 

𝑁𝑁𝑁𝑁1 =  𝐴𝐴𝐴𝐴0 ∙  𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 

the concrete tensile stress reaches the lowest actual concrete 
tensile strength, then primary cracks appear in one or more 
cross-sections. The size of the smallest concrete tensile 
strength and its distribution along the tension rod are random 
variables. In Figure 1a it was assumed that the weakest cross-
section is at x1 = 0. 

If the concrete tensile strength of this member would be 
uniform, then infinitely many, infinitely narrow cracks would 
appear at infinitely small intervals. The cross-sections with 
the same lowest concrete tensile strength are at different 
distances from one another: in some areas they can be so 
close to one another that the transfer lengths extend into one 
another. 

The steel stress in the cracked section is

σsII = N1 / As = (1 + αE ∙ ρ) / ρ ∙ fct1

The concrete stress in the crack sinks to zero and increases 
on both sides of the crack, along the transfer lengths according 
to the bond forces: a crack unloads the concrete on both sides. 
Figure 1b shows the course of the concrete tensile stresses 
along the bar axis x > 0 (with a dashed line shortly before, 
with a full line shortly after the occurrence of the first crack in 
the cross-section x1 = 0). The transfer length is ℓb1.

If the tensile force is increased further, the stresses in the 
steel and in the concrete and the transfer lengths increase in 
the crack/on both sides of the cracks. When the tensile force 
N2 = A0 ∙ fct2 is reached, a new crack will appear in the cross-

section at x2 which can be anywhere outside the transmission 
length ℓb2. Figure 1c shows the distribution of the concrete 
stresses before and after the appearance of the 2nd crack. 

It is quite possible that cross-sections with a concrete 
tensile strength 

fcti < fctk < fct i+1

initially remain uncracked if they are in the transfer length of 
a crack. With the increase in the tensile force and the bond 
forces, it can happen that, due to the relieving influence of 
the adjacent primary crack, primary cracks will nevertheless 
occur in some of these cross-sections at a higher tensile force 
N > A0 ∙ fctk. 

This means that the smallest possible primary crack 
distance can also be smaller than the transfer length. At the 
tensile force N3 = A0 fct3 a new crack will appear in cross-
section x3 (see Figure 1d). 

In our example, the transfer lengths that belong to the tensile 
force N3 overlap on both sides of the 3rd crack. Between the 
cracks No.1 and No.2, along the transfer lengths, there are no 
areas without any slip between concrete and steel. This still 
does not mean that the stabilized crack pattern is achieved.

In Figure 2, the phases of crack formation shown in Figure 
1 are shown axonometrically as a function of the tensile force 
N. The relieving effect of the neighboring cracks on the 
concrete stress, e.g. in cross-sections A and B, or the increase 
in the transfer lengths during the monotonically increasing 
load can be followed.

The loading process locates the “weak points” with the 
lowest concrete tensile strength of the concrete tension 
member. Of two otherwise identical reinforced concrete 
tensile members that are reinforced with reinforcing bars of 
different bond characteristics, the one with the better bond 
characteristics will have a denser crack pattern: the transfer 
lengths are shorter, so that shorter zones between the cracks 
that have already occurred are relieved, higher number of 
“weak points” will be loaded several beyond their current 
tensile strength.

3.		 FORCE- AND DEFORMATION 
PATTERNS BETWEEN TWO 
PRIMARY CRACKS

In this section, the patterns of the concrete-, steel- and bond 
stresses between two primary cracks whose transfer lengths 
overlap, are examined in more detail.

3.1		 Differential equation of the cracked 
tension member

From the equilibrium condition of a dx-long cracked tension 
member the relationship 

dσs As = -dσc Ac	 (1)

and the differential equation

dσs(x) As = τv(x) u dx	 (2)

can be derived
When deriving Eq. (1) it was assumed that the concrete 

Figure 1: Crack development in a member in tension: Distribution of 
a) the concrete tensile strength, b) the concrete tensile stresses before 
and after the development of the first, c) the second, and d) the third 
primary crack
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cross-sections would remain plain. This assumption is only 
permissible in case of limited cross-sectional dimensions - 
and there, too, only with reservations - because a constant 
transfer of force into the concrete takes place along the 
transfer lengths, so these concrete cross-sections are in the 
de Saint Venant- interference areas, where this assumption is 
inadmissible.

The Eq. (1) is not valid in the case of beams with flexure, 
because the eccentric compressive stresses in the cracked 
cross-sections, too, cause tensile stresses in the concrete 
tensile zone between the primary cracks.
Eq. (3) describes the compatibility condition: 

dv/dx = (σs – αE∙σc)/Es	 (3)

This equation is also only valid under the assumption that 
cross sections remain plane.

From Eqs. (2) and (3)  the differential equation 

dv / d²x= 4 τv (1 + αE ρ)/(Es ds)	 (4)

can be derived. When deriving Eq. (4) an elastic behavior of 
the reinforcing steel was assumed.

The bond-slip relationship is to be used in its most general 
form, whereby the influence of the hysteresis effect - a reversal 
of the initial relative displacements - is also taken into account. 

3.2		 Local bond stress-slip relationship
The local bond stress-slip relationship is of fundamental 
importance in the cracking process.

Rehm (1961) referred for the first time to the role of the 
relative displacement (slip) between reinforcing steel and 
concrete in the interaction of the two building materials and 
introduced the relationships between the local bond stress and 
the slip as a material law. 

The local bond stress-slip relationship was determined 
using different embedded lengths and almost always under 
monotonically increasing tensile forces.

Experiments with cyclic tensile forces by Windisch et 

al. (1983), Eligehausen et al. (1983) showed that when the 
sign of the slip is reversed, there are very steep unloading 
characteristics and very low bond stresses when there are 
slight opposite slips.

From more than hundred pull-out tests with cyclical 
loading (Windisch et al. 1983), using a refined evaluation 
method (Windisch 1985) the simplified local bond stress-slip 
relationship shown in Figure 3 was derived.
During the first loading phase (line OAB) the bond behavior 
can be described with the formula

τv  = βw ∙ (a + b ∙ vc)	 (5)

This assumption corresponds to the formulas of Rehm 
(1961) and Martin (1973).

In the case of unloading, the law follows a straight line 
(line BC) with an inclination of 250 N/mm³. Hawkins et al. 
(1982) have given a similar value.

The remaining slip after an unloading can only be canceled 
by an opposing bond stress with the intensity of

τv = -0.1 τv(B).

If the tensile force or the slip is increased in the opposite 
direction (-v), the law follows the line DB’ according to the 
formula

τv = βw ∙ (b ∙ vc)	 (6)

If the load is further reduced, the relationship between 
local bond stress and slip follows a straight line again with an 
incline of 250 N / mm³ (line B’C’). Along the line C’E 

τv = -0.1 τv(B’)

applies.

Figure 2: Phases of continuous crack development process Figure 3: Local bond stress-slip relationship under generalized 
displacement states
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If the slip reaches the line BE, the local bond force (bond 
stress) necessary to increase the slip increases according to 
the line BC. Eq. (5) is valid again beyond point B.

In the case of a new unloading, the bond stress-slip 
relationship follows the law shown with a dashed line.

If the sign of the slip changes at point G, the bond stress 
first follows the line GH with an inclination of 250 N/mm³ 
and then the line HE* etc.

Similar local bond-slip relationships have been proposed 
by Morita and Kaku (1975) and Tassios (1979), respectively. 

In the following calculations, the “deterioration” of the 
bond in the vicinity of the crack and the scatter of bond 
strength are not taken into account.

3.3		 Solution of the differential equation
When solving the differential equation (4), the corresponding 
boundary conditions must be taken into account. These 
boundary conditions change in part during the loading 
process.

The following applies to all primary cracks

σs = σsII = N / As  and  σct = 0 	 (7)

and in the case of single cracks, at the other end of the transfer 
length (x = ℓb)

σs = n ∙ σct   and v = 0 	 (8)

For tension rod areas between two primary cracks whose 
distance is smaller than twice the current transfer length, 2 ℓb, 
only the boundary conditions for both cracks are taken into 
account.

In view of the very complicated form of the composite 
law, a closed solution of the differential equation (4) is only 
possible for individual cracks (Noakowski, 1978, Krips, 
1984). For all other cases a numerical solution is sought.

The algorithm is similar to the one used for beams on 
elastic subgrade.

Starting from a crack, the equilibrium and compatibility 
conditions are met in the end points of integration sections Δx

σs, i+1 = σsi – 4 ∙ Δx ∙ τvi / ds 	 (9a)

vi+1 = vi – σ s, i+1 ∙ Δx / Es 	 (9b)

σc,i+1 = ρ / (1 – ρ) ∙ (N / As- σs,i+1) 	 (9c)

In the case of the relative displacements (Eq. (9b)), the 
influence of the concrete deformations was neglected.

The rib spacing cs is recommended as Δx.
The progressive approximation method was used to solve 

this algorithm. The principle of this method is that the actual 
boundary value problem is transformed into an initial value 
problem, whereby a variable in the starting point - here the 
relative displacement in crack No. 1 - is increased until the 
boundary conditions (7) or (8) for the other crack or are met 
at the other end of the transfer length.

3.4		 The behavior of a tension member 
between two primary cracks

With the method described above, the behavior of a tension 
rod between two primary cracks was investigated.

As reinforcement, Ø8 mm or Ø16 mm deformed bars (rib 
spacing 5 mm or 8 mm) with a related rib area of fR = 0.075 
were selected.

The two adjacent cracks at distance a may have occurred 
at the same load level or one after the other.

First, the course of the steel stresses and the crack widths 
as a function of the crack spacing and the steel stress in the 
crack for the case of two cracks occurring “simultaneously” 
are examined.

The courses of the concrete- and steel stresses are mirror-
symmetrical, those of the bond stresses or the relative 
displacements (slips) are antimetric to the center of the crack 
spacing.

On the basis of the crack width - crack spacing relationships 
(concrete class B25, which roughly corresponds to C20) 
shown in Figure 4 the following can be observed:

At the beginning the crack widths increase 
disproportionately with the crack spacing, but are independent 
of this above a certain limit distance - it is twice the transfer 
length for the tensile force in the reinforcement bar in the 
crack
-	 for smaller (a ≤ 150 mm) crack spacings, the crack widths 

calculated for Ø16 mm rebars are hardly wider than those 
for Ø8 mm rebars

-	 The ratio of the largest crack widths for Ø16 mm and Ø8 
mm rebars is only about 1.65: 1, i.e. the largest (critical) 
crack widths do not depend linearly on the rebar diameter.
Between two cracks that occurred at different load levels, 

the stress or slip curves show completely different properties: 
there is no symmetry or antimetry more.

Figure 5 a - c show the courses of the steel- and bond 
stresses and the relative displacements (slips) shortly before 
(with a dashed line) and immediately after the appearance of 
the 2nd (right) crack as a function of the crack spacing.

The strong influence of the occurrence of the second 
primary crack and the crack spacing on all three courses is 
obvious. The contribution of the concrete increases as the 
distance between the cracks increases (see Figure 5a).

The following can also be assessed from the calculation 
results:
-	 When the second crack occurs, the width of the first 

decreases a bit, the more the “closer” the second crack is 
to the first,

-	 If the crack spacing is only slightly greater than the 
transfer length belonging to the tensile force which caused 
the second crack, then the width of this second crack is at 

Figure 4: Crack width - crack spacing relationships as a function of 
the steel stress in the crack and the rebar diameter
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the beginning smaller than that of the first. However, as the 
tensile force increases, the second crack becomes wider 
than the first one.

-	 Neither the steel-, nor the concrete stresses have their 
extreme (min. and max. resp.) at the middle of the crack 
distance. From this it follows that the crack spacing does 
not try to „halve“ itself regardless of the distribution of the 
concrete tensile strength. König and Fehling (1988) came 
to the same conclusion in a completely different way.

-	 The „closer“ the cracks are to one another, the longer will 
be the zone with the smallest bond stresses, the flatter 
are the steel- and concrete stresses around their extreme 
values.

-	 The smaller is the concrete tensile strength in the cross 
section of the second crack, the greater is the likelihood of 
another crack occurring between the two.

-	 The further the two cracks are apart, the more the crack 
width increases with the tensile force.
Figure 6 shows the steel strains measured along a r.c. 

tension member with Ø20 mm reinforcement according to 
Scott and Gill (1987). The similarity to the stress curve in 
Figure 5a is obvious.

Figure 7 shows the calculated crack widths as a function of 
the crack spacing. The straight lines correspond to 

w = a ∙ σsII / Es

i.e. the pure steel expansion without the contribution of the 
concrete. The following conclusions can be drawn:
-	 The relatively small crack distances include several crack 

widths, the size of which depends on whether the adjacent 
cracks occurred at the same or different tensile forces.

-	 The crack widths first increase with the crack spacing, 
above a crack spacing which corresponds to twice the 
transfer length for N = σsII ∙ As, the function becomes 
monovalent.

-	 The transfer lengths are not linear, neither on the bar 
diameter nor on the steel stress.
All calculation results discussed so far have been determined 

for concrete class B25, (which roughly corresponds to C20).
Figure 8 shows the influence of the concrete quality on 

the crack width for a tension member with = 1 %, reinforced 
with Ø8 mm or Ø16 mm rebars. For this numerical example, 
300 mm or 480 mm crack spacings and the tensile force at 
the appearance of the first crack N = A0 ∙ fctm were assumed.
The following could be concluded:
-	 The steel stress at the crack development is higher than 

σsII = 243 N/mm² for concrete classes B35 (which roughly 

Figure 5: Courses of the steel stresses, slips and bond stresses in the 
case of cracks that do not occur simultaneously (Ø16 mm, σsII = 215 N/
mm², concrete class B25, which roughly corresponds to C20)

Figure 7: Calculated crack widths for a) Ø8 mm, b) Ø16 mm rebars

Figure 6: Measured steel strains in tensile reinforcement according to 
Scott and Gill (1987)
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corresponds to C30) and B45 (which roughly corresponds 
to C35), and even higher than 313 N/mm² for concrete 
class B45, so these tension members remain crack-free at 
these steel stresses.

-	 An increase in concrete strength reduces the crack width 
disproportionately.
Figure 9 shows the influence of the concrete strength on 

the crack width as a function of the crack spacing and the 
steel stress in the crack, σsII.

The two straight lines represent the ‘naked’ elongation of 
the reinforcing bars. With increasing concrete strength, at 
constant crack spacing, the increase in the contribution of the 
concrete can be observed: the higher the concrete strength, 
the shorter is the transfer length, whereby it approaches 
the constant crack spacing and accordingly the concrete 
contribution increases.

Figure 8: Influence of the concrete strength on the crack width, I.

4.		 CONCLUSIONS
The steel stress distribution between two primary cracks 
which occur at different load levels and at different distances 
from each other, is presented. The continuous crack formation 
is discussed where the stochastic distribution of the actual 
concrete tensile strength along the axis of the member in axial 
tension is considered.

Solving the differential equation of the bonded rebar 
a realistic local bond stress-slip relationship is taken into 
account where the hysteretic character of the relationship 
when the sign of local slip changes due to the occurrence of a 
new primary crack, is considered. 

The calculations for Ø8 mm and Ø16 mm rebars and B 
25 (which roughly corresponds to C20) concrete grade reveal 
that 
-	 at the beginning the crack widths increase disproportionately 

with the crack spacing, but are independent of this above a 
certain limit distance, it is twice the transfer length for the 
tensile force in the reinforcement bar in the crack

-	 for smaller (a ≤ 150 mm) crack spacings, the crack widths 
calculated for Ø16 mm rebars are hardly wider than those 
for Ø8 mm rebars

-	 The ratio of the largest crack widths for Ø16 mm and Ø8 
mm rebars is only about 1.65: 1, i.e. the largest (critical) 
crack widths do not depend linearly on the rebar diameter.

-	 The strong influence of the occurrence of the second 
primary crack and the crack spacing on the courses of steel 
stresses, bond stresses and slips is obvious. 

-	 The contribution of the concrete increases as the distance 
between the cracks increases 

-	 When the second crack occurs, the width of the first one 
decreases a bit, the more „closer“ the second crack is to the 
first one,

-	 If the crack spacing is only slightly greater than the 
transfer length belonging to the tensile force which caused 
the second primary crack, then the width of this second 
crack is at the beginning smaller than that of the first crack. 
However, as the tensile force increases, the later primary 
crack becomes wider than the first one.

-	 Neither the steel-, nor the concrete stresses have their 

Figure 9: Influence of the concrete strength on the crack width, II: tensile members reinforced with a) Ø8 mm, b) Ø16 mm rebars
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extreme (min. and max. resp.) at the middle of the crack 
distance. From this it follows that the crack spacing does 
not try to „halve“ itself regardless of the distribution of the 
concrete tensile strength. 

-	 The „closer“ the cracks are to one another, the longer will 
be the zone with the smallest bond stresses, the flatter 
are the steel- and concrete stresses around their extreme 
values.

-	 The smaller is the concrete tensile strength in the cross 
section of the second crack, the greater is the likelihood of 
another crack occurring between the two.
These realistic courses of the steel stresses, slips and bond 

stresses should help to develop mechanically founded crack 
width calculation models.
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