Worked examples based on fib MC 2010

- The examples illustrate the use of new methods offered by fib MC 2010
- They refer to practical situations which could not be treated adequately well up to now and structural applications or solutions which were not possible before.

19 September 2016

Shear capacity of old beam

The picture shows a detail of a beam-column connection in an old structure. The question is which is the shear capacity of the beam.

Delft University of Technology

Shear capacity of old beam

Verification with LoA III

- Step 1: Assume a the uniformly distributed load q_{Ed} on the beam
- Step 2: Calculate M_{ed} from q_{Ed}
- Step 3: Calculate V_{ed} from q_{Ed}
- Step 4: Calculate ε_x from (7.3-16)
- Step 5: Calculate ε_1 from (7.3-41)
- Step 6: Calculate k_{ϵ} from (7.3-40)
- Step 7: Calculate η_{fc} from (7.3-28)
- Step 8: Calculate k_c from (7.3-27)
- Step 9: Calculate V_{Rd,max} from (7.3-26)
- Step 10: Calculate k_v from (7.3-43)
- Step 11: Calculate V_{Rd,c} from (7.3-30)
- Step 12: Calcultate V_{Rd,s} from (7.3-29)
- Step 13: Calculate V_{Rd} from (7.3-23)
- Step 14: Calculate q_{Ed} from step 13
- Step 15: Compare q_{Ed} from step 14 with q_{Ed} from step 1

Shear capacity of old beam

Schritt	Grösse	Rechengang 1	Rechengang 2	Rechengang 3
1	q _{Ed} (angenommen)	150 kN/m	228 kN/m	211 kN/m
2	M _{Ed}	3030 kNM	4606 kNm	4262 kNm
3	V _{Ed}	1215 kN	1847 kN	1707 kN
4	ε _x	0,00084	0,0013	0,0012
5	ε ₁	0,0037	0,0046	0,0044
6	k _e	0,65	0,65	0,65
7	η_{fc}	1	1	1
8	k _c	0,65	0,65	0,65
9	V _{Rd,max}	5363 kN	5363 kN	5363 kN
10	k _v	0,137	0,089	0,0937
11	V _{Rdc}	413 kN	268 kN	282 kN
12	V _{Rds}	1438 kN	1438 kN	1438 kN
13	V _{Rd}	1851 kN	1705 kN	1720 kN
14	q _{Ed} (Ergebnis)	228 kN/m	211 kN/m	212 kN/m

Shear capacity of old bridge with sloped prestressing tendons in combination with reinforcing steel

Question 1

- Effective depth of truss?
- How many stirrups can be mobilized for shear

19 September 2016

Shear capacity of old bridge with sloped prestressing tendons in combination with reinforcing steel

Question 2

Shear capacity of members with uncracked flanges

Calculation of shear resistance with MC 2010 Cl. 7.3.3.2

6

19 September 2016

Punching shear capacity

Punching of flat slabs: Design example

Stefan Lips, Aurelio Muttoni, Miguel Fernández Ruiz Ecole Polytechnique Fédérale de Lausanne, Switzerland, 18.07.2011

Punching shear in thin bridge decks including compressive membrane action

Using the principles of design for punching shear in Cl. 7.3.5.4

- Using NLFEM
- Using FLFEM with the CSCT Method

19 September 2016

NLFEM analysis

Illustration of level I, II, III approximation for specific case

V. Cervenka · Reliability-based non-linear analysis according to fib Model Code 2010

Analysis of bridge over river Berounka

19 September 2016

Design of a fiber reinforced concrete floor slab based on piles

The floor supports a number of containment vessels for chemical fluids. It functions as a safety barrier for the case that one of the vessels fails. The fluid is catched by the tub-floor in order to protect the environment. The fiber reinforced floor is designed for tightness (w \leq 0,15mm) and for punching shear resistance)

Task Group on Worked Examples for fib MC 2010

- Members
- Inventarisation of practical applications which are available already
- Examples of applications to be worked out
- Terms of Reference to be worked out
- Time schedule
- Way of publication (Bulletin or Journal Issue)
- Seminar (Already invitation from Vienna)

